Les Peuplements Forestiers

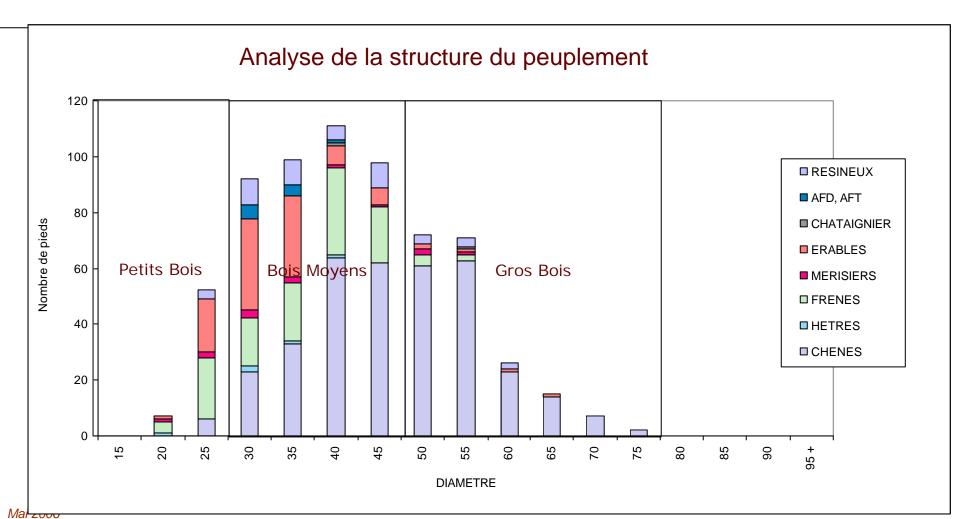
- Données caractéristiques
- Évolution d'un peuplement

Diamètre, structures

Diamètre moyen: exprimé en centimètres Utile en peuplement régulier

Structures : répartition par catégories de diamètre

Utile en peuplement irrégulier



Diamètre, structures

Analyse	d'uı	n ir	ıve	nta	ire	pie	d à	pie	ed s	sur	une	е ра	arce	elle	e de	6	hed	ctare
Diamètre à																		
,30m	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95 +	TOTAL
HENES	0	0	6	23	33	64	62	61	63	23	14	7	2	0	0	0	0	358
ETRES	0	1	0	2	1	1	0	0	0	0	0	0	0	0	0	0	0	5
RENES	0	4	22	17	21	31	20	4	2	0	0	0	0	0	0	0	0	121
IERISIERS	0	1	2	3	2	1	1	2	1	0	0	0	0	0	0	0	0	13
RABLES	0	1	19	33	29	7	6	2	1	1	1	0	0	0	0	0	0	100
CHATAIGNIER	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	2
AFD, AFT	0	0	0	5	4	1	0	0	0	0	0	0	0	0	0	0	0	10
ESINEUX	0	0	3	9	9	5	9	3	3	2	0	0	0	0	0	0	0	43
		N.		1/15-0		V		7/11		olume/		^	DD		DM		`D	N=No
0.15	6	N	_	V/ha				<u>//H/</u>	4 r	noyen		G	PB	-	<u>BM</u>	_	B ·	øo= [
CHE	NES	35	8	60	47	<u> </u>	98	83		1,39	10	0,8	2	2%	519	%	47%	6 Vol=
HE	TRES	5		1	31		2	0		0,50	0.	.07	20	%	80%	%	0%	6
FRE	NES	12	1	20	36	3	86	14		0,71	2	,13	21	%	74%	%	5%	GB/B
MERIS	IERS	13	3	2	36	3	10	2		0,77		24		%	54%	_	23%	
ERAE				- 17	33		60	10		0,60		53		%	75%		<u>5</u> %	
CHATAIGN		_		0	48		3	0		1,42		,06		%	50%		50%	-155 2
A FD,				2	33	_	6	1		0,55	_	,05		%	100%	_	0%	- 1 ^
RESIN	EUX	43	3	7	40		56	9		1,31		,23		′%	74%		19%	6 GB=9
TOT	4 UX	65	2	109		7	21	120)		1:	5,1						

Diamètre, structures

Hauteur dominante en mètres = hauteur moyenne des 100 plus gros arbres d'un peuplement

Liée à la fertilité de la station Corrélée à la production Indépendante de la sylviculture

Densité = Nombre de tiges par hectare

En relation avec diamètre moyen ou âge, renseigne sur:

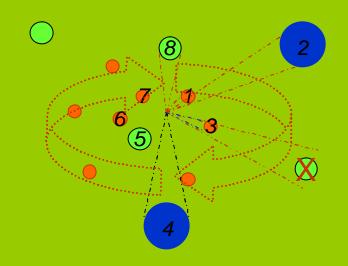
Occupation de l'espace

Opportunité d'éclaircir?

Choix de gestion

Surface terrière (G en m²) = Surface des sections des arbres supposés coupés à 1,30 m

Facile à mesurer


Indicateur sylvicole pour le suivi

Permet d'estimer le volume

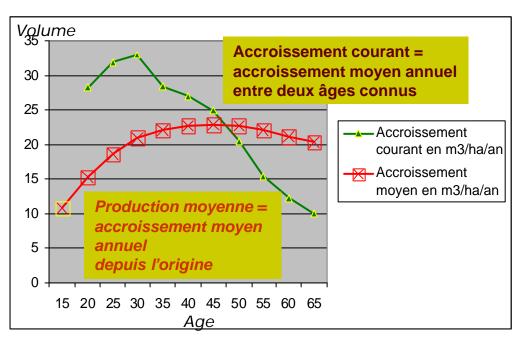
La surface terrière

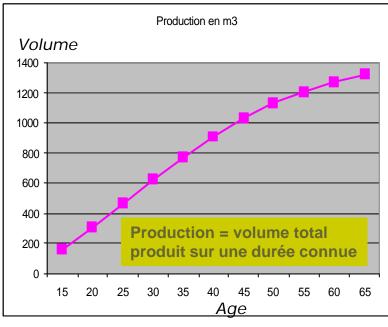
Surface terrière: Surface de la section à 1.30 m du sol

Elle est notée G, en m²

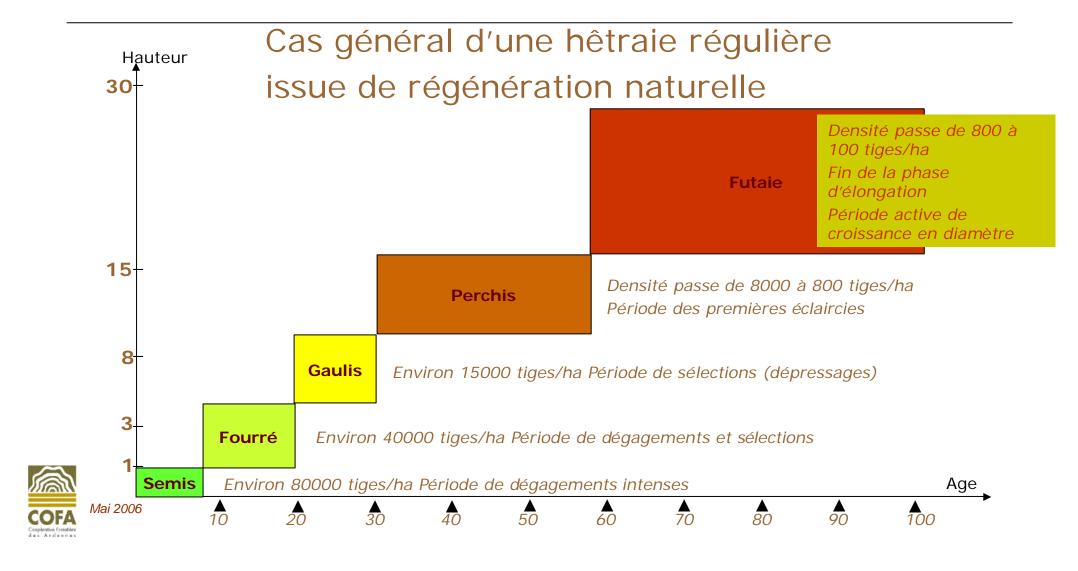
Surface mesurée : 8 m²

Volumes?


Volume aménagement


Volume commercial

Volume total


Exemple d'un peuplement de DOUGLAS sur 65 ans Massif Central Classe de fertilité 1

Évolution des peuplements

